最近这段时间总有小伙伴问小编什么是质数定义_什么是质数是什么,小编为此在网上搜寻了一些有关于什么是质数定义_什么是质数的知识送给大家,希望能解答各位小伙伴的疑惑。
1、什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。
2、这终规只是文字上的解释而已。
(资料图)
3、能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫名其妙。
4、如:104060701都是质数,但上下面的301(7*43)和901(17*53)却是合数。
5、有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。
6、这个式子一直到n=39时,都是成立的。
7、但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。
8、 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。
9、他发现,设Fn=2^(2^n),则当n分别等于0、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。
10、但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。
11、 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。
12、目前由于平方开得较大,因而能够证明的也很少。
13、现在数学家们取得Fn的最大值为:n=1495。
14、这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。
15、质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。
16、他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。
17、 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。
18、还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。
19、梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。
20、这是第九个梅森数。
21、20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。
22、质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。
23、 还有一种质数叫费马数。
24、形式是:Fn=2^(2^n)+1 是质数的猜想。
25、如F1=2^(2^1)+1=5 F2=2^(2^2)+1=17 F3=2^(2^3)+1=257 F4=2^(2^4)+1=65537F5=2^(2^5)+1=4294967297前4个是质数,因为第5个数实在太大了,费马认为是实数,并提出(费马没给出证明)后来欧拉算出F5=641*6700417.目前只有n=0,1,2,3,4,Fn才是质数.。